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Abstract
Elementary function representations of Schlömilch series introduced by
Twersky (Twersky V 1961 Arch. Ration. Mech. Anal. 8 323–32) are used
to construct the exact analytical expressions for the classical electromagnetic
problem of transverse electric multiple scattering by an infinite array of
insulating dielectric circular cylinders at oblique incidence.

PACS numbers: 41.20.Jb, 77.90.+k

1. Introduction

Twersky solved the problem of diffraction of plane electromagnetic waves at normal incidence
on a infinite grating of insulating dielectric circular cylinders as long ago as 1956 [2,3]. Since
then many other authors have studied a configuration of greater relevance to the problem.
For instance, Shestopalov et al [4, 5] have reiterated and improved his results and Bogdanov
et al [6] have constructed an algorithm for the problem of diffraction of a plane electromagnetic
wave, incident arbitrarily on a periodic array of infinitely long dielectric rods of circular cross
section. They presented the relations between the main diffraction characteristics of the array
and its parameters. In addition, Bogdanov et al [7–9] have extended their solution for arbitrary
incidence to various configurations including coaxial dielectric cylinders and coaxial metal–
dielectric cylinders, and they studied the dependence of the transmission coefficient of the
incident wave on various parameters of the problem. In a more recent study, Bogdanov et al [10]
examined both theoretically and experimentally the interaction of a plane electromagnetic
wave with an array made up of a periodic arrangement of dielectric cylindrical columns.
They investigated the normal-incidence case for a wave whose electric field vector is parallel
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Figure 1. The infinite grating of infinitely long dielectric circular cylinders.

to the cylinder axes. The investigation is carried out in the resonance region of the array for
three types of structure that differ in their fill coefficients.

In these previous works cited above the solutions for the fields do not cover the most
generalized case of oblique incidence, even though the grating is irradiated from the side of the
x-axis by an incident plane-polarized electromagnetic wave at an arbitrary angle to the x-axis,
whereas in the generalized oblique incidence solution presented in our work the direction
of the incident plane wave makes an arbitrary oblique angle θi with the positive z-axis, as
indicated in figure 1. As far as can be ascertained by this author, the most generalized case of
scattering by an infinite grating of circular dielectric cylinders for an obliquely incident plane
E-polarized wave has only recently been published by Kavaklıoǧlu [11, 12]. The solutions
for the exact representations of the external and internal fields corresponding to the vertical
polarization case were obtained by direct application of the separation-of-variables technique
and the addition theorem for cylindrical waves. This technique leads to two systems of
simultaneous linear equations of infinite order in coupled form for the scattering coefficients
associated with the external electric and magnetic fields [11]. Employing the Sommerfeld
integral representation of the Hankel function and exploiting the Poisson summation formula
in separation-of-variables solution the exact expressions for the diffracted electric and magnetic
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field intensities were derived in terms of the diffraction angles of the infinite grating of circular
dielectric cylinders for an obliquely incident transverse magnetic plane wave [12].

The purpose of this paper is to present the most generalized exact solution for ‘the
multiple scattering of transverse electric plane waves at oblique incidence by an infinite array of
insulating dielectric circular cylinders’ in terms of Schlömilch series and special functions. The
arbitrarily polarized incident plane electromagnetic wave shown in figure 1 can be decomposed
into two components yielding two different modes of polarization. The component for which
the incident electric field �Einc has no component parallel to the cylinders will be treated in this
paper. This is the horizontal polarization, which is also known as the transverse electric (TE)
mode. For this case, the incident H -field has a component that is parallel to all the cylinders.
For the TE mode, ĥi is the unit vector associated with the horizontal polarization case that
is parallel to the x–y plane and does not have any component parallel to the cylinders. The
fact that ‘the incident H -field has a component that is parallel to all the cylinders’ does not
mean that we deal with the TE mode as it does not exclude the existence of other components
of the H -field. The direction of the incident plane wave makes an arbitrary angle θi with
the positive z-axis. The validity of the infinite-order simultaneous linear equations for the
scattering coefficients of the TE scattering problem at oblique incidence and their associated
electric and magnetic fields obtained in this paper can be deduced from the vertical polarization
solution [11] by application of the principle of duality. In addition, the elementary function
representations of Schlömilch series introduced by Twersky [1] are modified in such a way
as to conform with the obliquely incident TE scattering solution presented here. Using
the Sommerfeld integral representation of the Hankel function and the Poisson summation
formula, propagating and evanescent mode operators associated with Schlömilch series have
been derived. Upon employing these newly derived mode operators associated with oblique
solution, the elementary function representations corresponding to Bessel and Neumann series
have been acquired.

2. Formulation

A horizontally polarized plane electromagnetic wave obliquely incident upon the infinite
grating of circular dielectric cylinders is indicated in figure 1. The dielectric cylinders of
the infinite grating are placed perpendicularly to the xy-plane, separated by a distance of d.
The infinite grating consists of an infinite number of parallel circular insulating dielectric
cylinders of infinite length. The dielectric cylinders of the grating all have identical relative
permittivity and permeability of εr andµr respectively. The radius of each individual dielectric
cylinder in the array corresponding to the sth cylinder is denoted by as .

An arbitrarily polarized plane electromagnetic wave that is incident upon the infinite
grating of insulating dielectric circular cylinders can be expressed as

�Einc( �ρ, t) = Re { �E0ei(�k0· �ρ−ωt)} (1)

where �E0 is the constant complex electric field vector of arbitrary direction, �k0 is a vector in
the direction of propagation with magnitude k0 that denotes the free-space wavenumber, �ρ
is the arbitrary position vector in the (x, y, z) Cartesian coordinate system, ω is the angular
frequency of the arbitrarily polarized obliquely incident wave in radians and t stands for the
time in seconds. The incident complex transverse electric field can be represented as

�Einc
h = ĥiE0hei�k0· �ρ (2)

where ĥi is the horizontal polarization vector. �k0 and �ρ can be decomposed into their radial
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and z-components in the (r, φ, z) cylindrical coordinate system as
�k0 = �kr + �kz (3a)

�ρ = �r + �z (3b)

�r = r(x̂ cosφ + ŷ sin φ) (3c)

�z = zẑ (3d)
�kr = −kr(x̂ cosφi + ŷ sin φi) (3e)
�kz = −kzẑ (3f)

where φi represents the angle of incidence in the xy-plane measured from the x-axis such that
φi = ψi − π ,

kr = k0 sin θi (3g)

kz = k0 cos θi (3h)

where θi denotes the angle of incidence between �k0 and the z-axis,
�Rs = �r − �rs (3i)

r =
√
x2 + y2 (3j)

�rs = s dŷ ∀s � s ∈ Z (3k)
�Rs = Rs(x̂ cosφs + ŷ sin φs) (3l)

and Z is the set of all integers. We have obtained the incident transverse electric field in the
cylindrical coordinate system of the sth cylinder [11] as

�Einc
h (Rs, φs, z) = ĥiE0hei�kr ·�rs

{ ∞∑
n=−∞

e−inψi Jn(krRs)e
in(φs+π/2)

}
e−ikzz (4)

where φs denotes the angle between �r − �rs and the x-axis. The solution for the electric field
intensity �E(Rs, φs, z) and the magnetic field intensity �H(Rs, φs, z) can be obtained for the
internal and external regions of the cylinders separately in the coordinate system of any one of
the cylinders. The entire external region that is outside all the insulating dielectric cylinders
is referred to as region I, and the entire internal region that contains all the points inside all
the insulating dielectric cylinders is referred to as region II. Hence, we adopt the following
notation for the z-component of the magnetic field intensity, which is a function of Rs, φs ,
and z:

Hz(Rs, φs, z) = H(I,h)
z (Rs, φs, z) � {Rs � as ∩ �Rs outside the cylinders} (5a)

Hz(Rs, φs, z) = H(II,h)
z (Rs, φs, z) � {Rs � as ∩ �Rs inside the cylinders}. (5b)

Since the infinite grating consists of insulating dielectric circular cylinders of infinite length,
the resultant fields must be periodic in the z-direction. Introducing this condition into (5), we
can write

H(N,h)
z (Rs, φs, z) = H̃ (N,h)

z (Rs, φs)e
ikzz ∀N � N ∈ {I, II} (6)

where kz is given by (3h). Inserting (5) into the well known Maxwell equations of classical
electromagnetism for time-harmonic fields, we have obtained the homogeneous Helmholtz
equation associated with the z-component of the magnetic field intensity as

(∇2 + k2
N)H

(N,h)
z (Rs, φs, z) = 0 ∀N � N ∈ {I, II} (7)

where

kI = k0 {Rs � as} ∩ { �Rs inside the cylinders} (8a)

kII = k0
√
εrµr {Rs � as} ∩ { �Rs outside the cylinders}. (8b)
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We can express the Laplacian operator in the cylindrical coordinate system of the sth cylinder
as

∇2 = ∇2
t +

∂2

∂z2
(9a)

where

∇2
t = ∂2

∂R2
s

+
1

Rs

∂

∂Rs

+
1

R2
s

∂2

∂φ2
s

. (9b)

Inserting (9a) in (7), we have the scalar Helmholtz equation associated with the z-components
of the magnetic field intensities as(

∇2
t +

∂2

∂z2
+ k2

N

)
H̃ (N,h)

z (Rs, φs)e
−ikzz = 0 ∀N � N ∈ {I, II} (10)

and

[∇2
t + (k2

N − k2
z )]H̃

(N,h)
z (Rs, φs) = 0 ∀N � N ∈ {I, II}. (11)

This yields the equations for the z-component of the external magnetic field intensity as

(∇2
t + k2

r )H̃
(I,h)
z (Rs, φs) = 0 � {Rs � as ∩ �Rs outside the cylinders} (12a)

and for the z-component of the internal magnetic field intensity as

(∇2
t + k2

1)H̃
(II,h)
z (Rs, φs) = 0 � {Rs � as ∩ �Rs inside the cylinders} (12b)

where kr is given by (3g) and k1 is defined as

k1 = k0

√
εrµr − cos2 θi . (13)

3. Multiple-scattering representations for the obliquely incident transverse electric field

3.1. The z-components of the fields

The solution for the z-components of the magnetic field intensity in the external region can be
written as

H(I,h)
z (Rs, φs, z) = H inc

z (Rs, φs, z) +
+∞∑

j=−∞
Hj

z (Rj , φj , z) (14)

when there are cylinders whose axes are located at �r0, �r1, �r2 etc. The first term in this expression
corresponds to the z-component of the incident electric field intensity in the coordinate system
of the sth cylinder that is located at �rs . The second term H

j
z (Rj , φj , z) represents a cylindrical

wave outgoing from the j th scatterer as |�r − �rj | → ∞. The z-component of the cylindrical
wave scattered by the sth cylinder can be expressed in terms of Hankel functions of the first
kind as

H̃ s
z (Rs, φs) = ei�kr ·�rs

+∞∑
n=−∞

CnsH
(1)
n (krRs)e

in(φs+π/2) (15)

Hs
z (Rs, φs, z) = H̃ s

z (Rs, φs)e
−ikzz (16)

since the solution is performed in the coordinate system of the sth cylinder, that is the (Rs, φs, z)

cylindrical coordinate system referred to the cylinder s. In the representation above, Cns denote
the undetermined scattering coefficients associated with the external magnetic field intensity
referred to the sth cylinder for an obliquely incident transverse electric field.
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Figure 2. Descriptions of the variables in the TE scattering by the infinite grating.

In order to apply the boundary conditions on the surface of the sth cylinder �Rs = �as , it
is necessary to express H̃ t

z (Rt , φt ) for t �= s in terms of the cylindrical waves referred to the
coordinate system of the sth cylinder. Referring to figure 2, we can obtain the z-component
of the scattered magnetic field intensity by the t th cylinder in terms of the cylindrical waves
referred to the coordinate system of the sth cylinder by applying the addition theorem for the
cylindrical waves [2, 3, 11, 13] to the Hankel function H(1)

m (krRt ) of H̃ t
z (Rt , φt ) as

H̃ t
z (Rs, φs) = ei�kr ·�rt

+∞∑
n=−∞

UnstJn(krRs)e
in(φs+π/2) (17)

where

Unst =
+∞∑

m=−∞
CmtH

(1)
n−m(kr |�rt − �rs |)ei(m−n)(φst− π

2 ) (18)
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and φts is the angle made by �rt − �rs with the x-axis. The z-component of the total magnetic
field intensity in the external region can be expressed as

H(I,h)
z (Rs, φs, z) = H inc

z (Rs, φs, z) + Hs
z (Rs, φs, z) +

+∞∑
t=−∞
t �=s

H t
z (Rt , φt , z) (19)

that is, the sum of the incident field and the scattered field from all cylinders. The z-component
of the total magnetic field intensity in the external region of the cylinders can be obtained
employing the expansion of a plane wave in terms of cylindrical waves referred to the coordinate
system of the sth cylinder as

H(I,h)
z (Rs, φs, z) =

{
ei�kr ·�rs

+∞∑
n=−∞

[(H i
n + Vns)Jn(krRs) + CnsH

(1)
n (krRs)]e

in(φs+π/2)

}
e−ikzz (20)

for Rs � as , where

Hi
n = sin θiH0ve−inψi (21a)

H0v = η0E0h (21b)

η0 =
√
ε0/µ0. (21c)

The multiple-scattering terms associated with the magnetic field intensity in (20) are given as

Vns =
+∞∑

t=−∞
t �=s

ei�kr ·(�rt−�rs )Unst (22a)

Unst =
+∞∑

m=−∞
CmtH

(1)
n−m(kr |�rt − �rs |)ei(m−n)(φst− π

2 ). (22b)

On the other hand, the internal magnetic field intensity can be expressed as

H(II,h)
z (Rs, φs, z) =

{
ei�kr ·�rs

+∞∑
n=−∞

DnsJn(k1Rs)e
in(φs+π/2)

}
e−ikzz (23)

Rs � as , where k1 is given by (13), and Dns represent the undetermined scattering coefficients
associated with the internal magnetic field intensity referred to the sth cylinder for an obliquely
incident transverse electric field. In a similar fashion, we can write

E(I,h)
z (Rs, φs, z) =

{
ei�kr ·�rs

+∞∑
n=−∞

[V E
nsJn(krRs) + CE

nsH
(1)
n (krRs)]e

in(φs+π/2)

}
e−ikzz (24)

Rs � as , for the external electric field intensity, and the multiple-scattering terms associated
with this field are given as

V E
ns =

+∞∑
t=−∞
t �=s

ei�kr ·(�rt−�rs )UE
nst (25a)

UE
nst =

+∞∑
m=−∞

CE
mtH

(1)
n−m(kr |�rt − �rs |)ei(m−n)(φst− π

2 ). (25b)

On the other hand, we can write

E(II,h)
z (Rs, φs, z) =

{
ei�kr ·�rs

+∞∑
n=−∞

DE
nsJn(k1Rs)e

in(φs+π/2)

}
e−ikzz (26)

for Rs � as , for the internal electric field intensity, respectively. CE
ns and DE

ns represent the
undetermined scattering coefficients referring to the external and internal regions, ∀n � n ∈ Z

and ∀s � s ∈ Z corresponding to E(M,h)
z � M ∈ {I, II}, z-components of the electric field

intensities.
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3.2. Angular components of the electric and magnetic field intensities

Angular components of the electric and magnetic field intensities associated with the external
fields can be derived from Maxwell’s equations in terms of the z-components of the electric
and magnetic field intensities as

H
(I,h)
φs

(Rs, φs, z) = 1

k2
r

1

Rs

∂

∂z

(
∂H(I,h)

z

∂φs

)
− ωε0

ik2
r

(
∂E(I,h)

z

∂Rs

)
(27)

H
(I,h)
φs

(Rs, φs, z) = e−ikzzei�kr ·�rs
+∞∑

n=−∞

{
nkz

Rsk2
r

[(H i
n + Vns)Jn(krRs) + CnsH

(1)
n (krRs)]

−ωε0

ikr
[V E

ns J̇n(krRs) + CE
nsḢ

(1)
n (krRs)]

}
ein(φs+π/2) (28)

and

E
(I,h)
φs

(Rs, φs, z) = 1

k2
r

1

Rs

∂

∂z

(
∂E(I,h)

z

∂φs

)
+
ωµ0

ik2
r

(
∂H(I,h)

z

∂Rs

)
(29)

E
(I,h)
φs

(Rs, φs, z) = e−ikzzei�kr ·�rs
+∞∑

n=−∞

{
nkz

Rsk2
r

[V E
nsJn(krRs) + CE

nsH
(1)
n (krRs)]

+
ωµ0

ikr
[(H i

n + Vns)J̇n(krRs) + CnsḢ
(1)
n (krRs)]

}
ein(φs+π/2) (30)

in the external region, Rs � as . In the above, the J̇n and Ḣ (1)
n are defined as J̇n(ζ ) ≡

(d/dζ )Jn(ζ ) and Ḣ (1)
n (ζ ) ≡ (d/dζ )H (1)

n (ζ ), which are the first derivatives of the Bessel and
Hankel functions of first kind and of order n with respect to their arguments. Similarly, in the
internal region, we can calculate the magnetic field intensity using the expression

H
(II,h)
φs

(Rs, φs, z) = 1

k2
1

1

Rs

∂

∂z

(
∂H(II,h)

z

∂φs

)
− ωε1

ik2
1

(
∂E(II,h)

z

∂Rs

)
(31)

that yields

H
(II,h)
φs

(Rs, φs, z) = ei�kr ·�rs
{ +∞∑

n=−∞

[
nkz

Rsk
2
1

DnsJn(k1Rs) − ωε1

ik1
DE

nsJ̇n(k1Rs)

]
ein(φs+ π

2 )

}
e−ikzz.

(32)

The angular component of the electric field intensity can be expressed in terms of the
z-components of the electric and magnetic field intensities in the internal region as

E
(II,h)
φs

(Rs, φs, z) = 1

k2
1

1

Rs

∂

∂z

(
∂E(II,h)

z

∂φs

)
+
ωµ1

ik2
1

(
∂H(II,h)

z

∂Rs

)
(33)

that provides the desired angular component of the electric field intensity in the internal region
as

E
(II,h)
φs

(Rs, φs, z) = ei�kr ·�rs
{ +∞∑

n=−∞

[
nkz

Rsk
2
1

DE
nsJn(k1Rs) +

ωµ1

ik1
DnsJ̇n(k1Rs)

]
ein(φs+π/2)

}
e−ikzz

(34)

for Rs � as .
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3.3. Radial components of the electric and magnetic field intensities

Using the Maxwell equations, we can express the radial component of the magnetic field
intensity in terms of the angular and z-components of the external electric field intensities as

H
(I,h)
Rs

(Rs, φs, z) = 1

iωµ0

[
1

Rs

∂E(I,h)
z

∂φs

+ ikzE
(I,h)
φs

]
(35)

which yields the radial component of the external magnetic field intensity in terms of the Bessel
and Hankel functions and some undetermined coefficients as

H
(I,h)
Rs

(Rs, φs, z) = ei�kr ·�rs
{ +∞∑

n=−∞

{
n

ωµ0

[
1 +

(
kz

kr

)2] 1

Rs

[V E
nsJn(krRs) + CE

nsH
(1)
n (krRs)]

−i

(
kz

kr

)
[(H i

n + Vns)J̇n(krRs) + CnsḢ
(1)
n (krRs)]

}
ein(φs+π/2)

}
e−ikzz. (36)

Similarly, the radial component of the electric field intensity in the external region of the infinite
grating can be expressed using the angular and z-components of the magnetic field intensities
in the external region as

E
(I,h)
Rs

(Rs, φs, z) = −1

iωε0

[
1

Rs

∂H(I,h)
z

∂φs

+ ikzH
(I,h)
φs

]
(37)

which in turn yields the radial component of the electric field intensity in the external region
in terms of the Bessel and Hankel functions and some undetermined coefficients as

E
(I,h)
Rs

(Rs, φs, z) = ei�kr ·�rs
{ +∞∑

n=−∞

{
− n

ωε0

[
1 +

(
kz

kr

)2] 1

Rs

[(H i
n + Vns)Jn(krRs)

+CnsH
(1)
n (krRs)] − i

(
kz

kr

)
[V E

ns J̇n(krRs) + CE
nsḢ

(1)
n (krRs)]

}
ein(φs+π/2)

}
e−ikzz.

(38)

For the internal region of the grating, we can express the radial component of the magnetic
field intensity in terms of the angular and z-components of the electric field intensities as

H
(II,h)
Rs

(Rs, φs, z) = 1

iωµ1

[
1

Rs

∂E(II,h)
z

∂φs

+ ikzE
(II,h)
φs

]
(39)

which yields the radial component of the magnetic field intensity in the internal region of the
grating in terms of the Bessel and Hankel functions and some undetermined coefficients as

H
(II,h)
Rs

(Rs, φs, z) = ei�kr ·�rs
{ +∞∑

n=−∞

n

ωµ1

[
1 +

(
kz

k1

)2] 1

Rs

DE
nsJn(k1Rs)

−i

(
kz

k1

)
DnsJ̇n(k1Rs)

}
ein(φs+π/2)

}
e−ikzz. (40)

Similarly, the radial component of the electric field intensity in the internal region of the infinite
grating can be expressed using the angular and z-components of the magnetic field intensities as

E
(II,h)
Rs

(Rs, φs, z) = −1

iωε1

[
1

Rs

∂H(II,h)
z

∂φs

+ ikzH
(II,h)
φs

]
(41)

which in turn yields the radial component of the electric field intensity in the internal region
of the infinite grating in terms of the Bessel and Hankel functions and some undetermined
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coefficients as

E
II,h
Rs

(Rs, φs, z) = ei �kr · �rs
{ +∞∑

n=−∞

{
− n

ωε1

[
1 +

(
kz

k1

)2] 1

Rs

DnsJn(k1Rs)

−i

(
kz

k1

)
DE

nsJ̇n(k1Rs)

}
ein(φs+π/2)

}
e−ikzz. (42)

3.4. Application of boundary conditions

Using the continuity of the z-components of the field intensities at the surface of each cylinder,
we obtained

(H i
n + Vns)Jn(kras) + CnsH

(1)
n (kras) = DnsJn(k1as) (43)

and

V E
nsJn(kras) + CE

nsH
(1)
n (kras) = DE

nsJn(k1as). (44)

Similarly, employing the continuity of the angular components of the field intensities at the
surface of each cylinder, we have
nkz

ask2
r

[(H i
n + Vns)Jn(kras) + CnsH

(1)
n (kras)] − ωε0

ikr
[V E

ns J̇n(kras) + CE
nsḢ

(1)
n (kras)]

= nkz

ask
2
1

DnsJn(k1as) − ωε1

ik1
DE

nsJ̇n(k1as) (45)

and
nkz

ask2
r

[V E
nsJn(kras) + CE

nsH
(1)
n (kras)] +

ωµ0

ikr
[(H i

n + Vns)J̇n(kras) + CnsḢ
(1)
n (kras)]

= nkz

ask
2
1

DE
nsJn(k1as) +

ωµ1

ik1
DnsJ̇n(k1as). (46)

Under the assumption that all the cylinders have the same radius, i.e. as = a for all s, the
coefficients of the internal magnetic and electric field intensities inside the infinite grating can
be expressed in terms of the scattering coefficients of the external field intensities as

Dn = (H i
n + Vn)Jn(kra) + CnH

(1)
n (kra)

Jn(k1a)
(47)

for the magnetic field intensity, and

DE
n = V E

n Jn(kra) + CE
n H

(1)
n (kra)

Jn(k1a)
(48)

for the electric field intensity. The scattering coefficients of the external magnetic and electric
fields are expressed in terms of the following two infinite sets of equations:

nkz

a

(
1

k2
r

− 1

k2
1

)
[(H i

n + Vn)Jn(kra) + CnH
(1)
n (kra)] − ωε0

ikr
[V E

n J̇n(kra) + CE
n Ḣ

(1)
n (kra)]

= −ωε1

ik1
[V E

n Jn(kra) + CE
n H

(1)
n (kra)]

J̇n(k1a)

Jn(k1a)
(49)

and
nkz

a

(
1

k2
r

− 1

k2
1

)
[V E

n Jn(kra) + CE
n H

(1)
n (kra)] +

ωµ0

ikr
[(H i

n + Vn)J̇n(kra) + CnḢ
(1)
n (kra)]

= ωµ1

ik1
[(H i

n + Vn)Jn(kra) + CnH
(1)
n (kra)]

J̇n(k1a)

Jn(k1a)
. (50)
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The equations for the scattering coefficients of the infinite grating of insulating dielectric
circular cylinders can be further simplified by defining a constant Kn as

Kn = nkz

a

(
1

k2
1

− 1

k2
r

)
(51)

∀n � n ∈ Z, and two sets of constants αn(ζr) and βn(ζr), in which ζr ∈ {εr , µr} represents
the dielectric constant and the relative permeability of the dielectric cylinders respectively, as

αn(ζr) =
[
J̇n(kra)

kr
−

(
ζr

k1

)
Jn(kra)J̇n(k1a)

Jn(k1a)

]
(52a)

βn(ζr) =
[
Ḣ (1)

n (kra)

kr
−

(
ζr

k1

)
H(1)

n (kra)J̇n(k1a)

Jn(k1a)

]
(52b)

∀n � n ∈ Z. Introducing these definitions into (49) and (50), the latter equations can be
written in simplified form as

KnH
(1)
n (kra)

iωε0βn(εr)

[
Cn +

Jn(kra)

H
(1)
n (kra)

(H i
n + Vn)

]
=

[
CE

n +
αn(εr)

βn(εr)
V E
n

]
∀n � n ∈ Z (53a)

KnH
(1)
n (kra)

iωµ0βn(µr)

[
CE

n +
Jn(kra)

H
(1)
n (kra)

V E
n

]
= −

[
Cn +

αn(µr)

βn(µr)
(H i

n + Vn)

]
∀n � n ∈ Z. (53b)

3.5. Evaluation of the multiple-scattering terms Vn and V E
n

The multiple-scattering effects associated with the magnetic field intensities were given in (22).
Inserting (22b) into (22a), and assuming that all the cylinders are identical, we can write the
multiple-interaction terms associated with magnetic field intensity as

Vn =
+∞∑

t=−∞
t �=s

ei�kr ·( �rt−�rs )
{ +∞∑

m=−∞
CmH

(1)
n−m(kr | �rt − �rs |)ei(m−n)(φst− π

2 )

}
. (54a)

Interchanging the order of summation as in Twersky’s treatment [3] for the non-oblique case,
we have

Vn =
+∞∑

m=−∞
Cm

{ +∞∑
t=−∞
t �=s

ei�kr ·( �rt−�rs )H (1)
n−m(kr | �rt − �rs |)ei(m−n)(φst− π

2 )

}
. (54b)

We recognize the term under the summation as a Schlömilch series [3]

Jn−m(krd) :=
+∞∑

t=−∞
t �=s

ei�kr ·( �rt−�rs )H (1)
n−m(kr | �rt − �rs |)ei(m−n)(φst− π

2 ) (55a)

where H(1)
n = Jn + iNn represents the Hankel function of the first kind and Jn and Nn

the Bessel and Neumann functions. The Schlömilch series are convergent provided that
krd(1±sin ψi)/2π is not equal to integers [1,3,13]. Introducing the definition of the Schlömilch
series as in [1] as

Jn−m(krd) =
∞∑
s=1

H
(1)
n−m(skrd)[e

−iskr d sin ψi + (−1)n−meiskr d sin ψi ] (55b)

the multiple-scattering effects associated with magnetic field intensity can be expressed in
terms of Schlömilch series as

Vn =
+∞∑

m=−∞
CmJn−m(krd). (56)
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In order to evaluate the multiple-scattering effects V E
n ’ associated with the electric field

intensities, we insert (25b) into (25a) and assume that all the cylinders are identical, thus
we have

V E
n =

+∞∑
t=−∞
t �=s

ei�kr ·( �rt−�rs )
{ +∞∑

m=−∞
CE

mH
(1)
n−m(kr | �rt − �rs |)ei(m−n)(φst− π

2 )

}
. (57)

Interchanging the order of summation in (57) as in Twersky’s treatment [3], we obtained

V E
n =

+∞∑
m=−∞

CE
n Jn−m(krd) (58)

where Jn−m(krd) is the Schlömilch series and is given by (55b).

3.6. Exact equations for the scattering coefficients for the obliquely incident transverse
electric field

The exact form of the equations for the scattering coefficients of the transverse electric multiple
scattering of the infinite grating at oblique incidence can then be expressed in terms of the well
known Schlömilch series as

KnH
(1)
n (kra)

iωε0βn(εr)

{
Cn +

Jn(kra)

H
(1)
n (kra)

[
Hi

n +
+∞∑

m=−∞
CmJn−m(krd)

]}

=
[
CE

n +
αn(εr)

βn(εr)

+∞∑
m=−∞

CE
mJn−m(krd)

]
∀n � n ∈ Z (59a)

KnH
(1)
n (kra)

iωµ0βn(µr)

[
CE

n +
Jn(kra)

H
(1)
n (kra)

+∞∑
m=−∞

CE
mJn−m(krd)

]

= −
{
Cn +

αn(µr)

βn(µr)

[
Hi

n +
+∞∑

m=−∞
CmJn−m(krd)

]}
∀n � n ∈ Z. (59b)

In the above, we have obtained the scattering coefficients for the electric and magnetic fields for
an obliquely incident transverse electric plane wave in terms of two systems of simultaneous
linear equations of infinite order in coupled form.

4. Elementary function representations of the multiple-scattering terms for the
transverse electric scattering at oblique incidence

4.1. Schlömilch series

In order to be able to evaluate the multiple-scattering terms analytically, we shall refer to
Twersky’s elementary function representations of Schlömilch series. This section demonstrates
the application of these elementary function representations for the obliquely incident waves.
In general, the multiple-scattering representation given in (55b) is too slowly convergent when
the distance between the cylinders of the grating is much smaller than the wavelength of the
radiation, i.e. krd � 1. Therefore, an alternative representation of the Schlömilch series will
be presented in terms of elementary functions. For this purpose, we first put (55b) into a more
compact form as
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Jn−m(krd) =
∞∑
s=1

[H(1)
n−m(skrd)e

−iskr d sin ψi + (−1)n−mH
(1)
n−m(skrd)e

iskr d sin ψi ] (60a)

Jn−m(krd) =
∞∑
s=1

H
(1)
n−m(skrd)e

−iskr d sin ψi +
∞∑
s=1

(−1)n−mH
(1)
n−m(skrd)e

iskr d sin ψi . (60b)

In the above, employing

H
(1)
n−m(−skrd) ≡ (−1)n−mH

(1)
n−m(skrd) (61)

we have obtained

Jn−m(krd) =
∞∑

s=−∞
s �=0

H
(1)
n−m(skrd)e

−iskr d sin ψi . (62)

In order to reduce Jn−m(krd) in (62) to its elementary function representation, which we shall
denote by H, we note that the sum over s in (62) is essentially the limit of the sum of hn−m(krr)

for y = x → 0, i.e.

Jn−m(krd) = lim
r→0

(y=x→0)

hn−m(krr) := Hn−m(krd) (63)

where r is given by (3j) and hn−m(krr) are given for x > 0 as

hn−m(krr) =
∞∑

s=−∞
s �=0

eiskr d sin ψiH
(1)
n−m(krRs)e

i( π
2 −φs)(n−m) (64)

or, more explicitly, we can write

hn−m(krr) = −H
(1)
n−m(krR0)i

n−me−i(n−m)φ0 +
∞∑

s=−∞
eiskr d sin ψiH

(1)
n−m(krRs)i

n−me−i(n−m)φs . (65)

In the derivation above, we have used the expressions pertaining to figure 2 as

Rs =
√
x2 + (y − sd)2 ∀s � s ∈ Z (66a)

lim
r→0

krRs = −skrd (66b)

R0 ≡
√
x2 + y2 = r (66c)

and

φs = tan−1

(
y − sd

x

)
∀s � s ∈ Z. (67)

4.2. Derivation of Schlömilch series in terms of operators

Defining

�kφ = kr(x̂ cosφ + ŷ sin φ) (68a)

�Rs = Rs(x̂ cosφs + ŷ sin φs) (68b)
�Rs = xx̂ + (y − sd)ŷ (68c)

�kφ · �Rs = krRs cos (φ − φs) (69a)

�kφ · �Rs(−φs) = krRs cos (φ + φs) (69b)
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and using the Sommerfeld integral representation of the Hankel function and exploiting the
full range available for the limits of the path in the complex domain, we can write for x > 0

H
(1)
n−m(krRs)i

n−me−i(n−m)φs = 1

π

∫ π
2 −i∞

− π
2 +i∞

ei�kφ · �Rs(−φs)+i(n−m)φ dφ (70a)

H
(1)
n−m(krRs)i

n−me−i(n−m)φs = 1

π

∫ π
2 −i∞

− π
2 +i∞

eikrRs cos(φ+φs)+i(n−m)φ dφ (70b)

H
(1)
n−m(krRs)i

n−me−i(n−m)φs = 1

π

∫ ∞

−∞
eikr

[
x
√

1−p2−(y−sd)p

]
ei(n−m) sin−1 p√

1 − p2
dp (71)

which holds for all |φs | < π
2 , i.e. x > 0. Utilizing (71) in the further evaluation of the second

term in (65), we can write
∞∑

s=−∞
eiskr d sin ψiH

(1)
n−m(krRs)i

n−me−i(n−m)φs

=
∞∑

s=−∞
eiskr d sin ψi

{
1

π

∫ ∞

−∞
eikr

(
x
√

1−p2−(y−sd)p

)[
ei(n−m) sin−1 p√

1 − p2

]
dp

}

=
{

1

π

∫ ∞

−∞
eikr

(
x
√

1−p2−yp

)[
ei(n−m) sin−1 p√

1 − p2

]
dp

} ∞∑
s=−∞

eiskr d(p+sin ψi). (72)

We now introduce the Poisson summation formula into (72) as
∞∑

s=−∞
eiskr d(p+sin ψi) = 2π

krd

∞∑
s=−∞

δ(p + sin φs) (73)

where sin φs is defined as

sin φs := sin ψi + s
2π

krd
. (74)

The angles φs are the usual diffraction angles of the grating, and equation (74), that provides
these discrete angles, is called the grating equation, which appears in the single-scattering
model as well. Propagating modes are determined by | sin φs | < 1, and they correspond to
|s| � s±, where s+ and s− are the closest integers to σ+ and σ− for which | sin φs | < 1 should
be satisfied, i.e. s± < σ±, such that

σ± = (1 ∓ sin φi)

(
krd

2π

)
. (75)

Evanescent modes are determined by | sin φs | > 1, and they correspond to integer values of s
such that |s| � s± + 1; we have ± sin φ±

s > 1, and φ±
s are determined by φ±

s = ±π
2 ∓ i|η±

s |.
For this case the grating equation takes the form

cosh |η±
s | = ±

[
sin φi + s

(
2π

krd

)]
> 1 ∀s � {s ∈ Z| ± s � s± + 1}. (76)

We have evaluated (72) as
∞∑

s=−∞
eiskr d sin ψiH

(1)
n−m(krRs)i

n−me−i(n−m)φs = 2
∞∑

s=−∞
(Lse

−i(n−m)φs )ei �ks ·�r (77)

where Ls, �ks and �r are defined as

Ls := 1

krd cosφs

(78a)

�ks := kr(x̂ cosφs + ŷ sin φs) (78b)

�r := xx̂ + y �y. (78c)
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On the other hand, the application of the Sommerfeld integral representation for the first term
in (65) yields

H
(1)
n−m(krR0)i

n−me−i(n−m)φ0 = 1

π

∫ ∞

−∞
eikr

(
x
√

1−p2−yp

)[
ei(n−m) sin−1 p√

1 − p2

]
dp. (79)

In order to put this under the same kernel as the first term, we introduce a change of variable,
p = − sin φs . Thus we establish the following expression for the first term in (65):

H
(1)
n−m(krR0)i

n−me−i(n−m)φ0 = 2
∫ ∞

−∞
ds(Lse

−i(n−m)φs )ei �ks ·�r . (80)

Combining (77) and (80) in (65), we obtain hn−m(krr) as

hn−m(krr) = 2

( ∞∑
s=−∞

−
∫ ∞

−∞
ds

)
(Lse

−i(n−m)φs )ei �ks ·�r x > 0 (81a)

hn−m(krr) = 2

( ∞∑
s=−∞

−
∫ ∞

−∞
ds

)
eikr (x cosφs+y sin φs)Lse

−i(n−m)φs x > 0 (81b)

where s is an integer for the sum operation and a continuous variable for the integral; similarly
for x < 0, we replace φs by π − φs . In order to evaluate Hn−m(krd), we have first
substituted (81) into (63), let y → 0, and then take the limit as x = ε → +0

Hn−m(krd) = lim
r→0

(y=0;x=ε→0)

hn−m(krr) (82)

Hn−m(krd) = 2

{
lim
ε→0

( ∞∑
s=−∞

−
∫ ∞

−∞
ds

)
eiεkr cosφs

}
Lse

−i(n−m)φs . (83)

In the expression above, we can define the mode operator S as

S := lim
ε→0

( ∞∑
s=−∞

−
∫ ∞

−∞
ds

)
eiεkr cosφs . (84)

In terms of this mode operator S, (83) can be written as

Hn−m(krd) = 2SLs exp[−i(n − m)φs] (85a)

Hn−m(krd) = 2SLs exp[−i(n − m)(π − φs)] (85b)

and the arithmetical means of (85a) and (85b) are given as

Hn−m(krd) = SLs{exp[−i(n − m)φs] + exp[−i(n − m)(π − φs)]}. (86)

4.3. Propagating range

In the application of the operator S, we can split it into its propagating and evanescent ranges
as

S = Sp + Se (87)

where Sp indicates the propagating range of S corresponding to | sin φs | < 1, and Se indicates
the evanescent range of S corresponding to | sin φs | > 1. Thus, for the propagating range we
have the propagating mode operator Sp as

Sp =
+s+∑

s=−s−

−
∫ +σ+

−σ−
ds. (88)
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The upper and lower limits in the integral above are given as

σ∓ = krd

2π
(1 ± sin ψi) (89)

for s± ∈ Z, and σ± ∈ R. Differentiating the grating equation with respect to φs , we have
established ds = dφs

2πLs
, and using this in (88) we have obtained the propagating mode operator

Sp as

Sp =
+s+∑

s=−s−

− 1

2π

∫ + π
2

− π
2

dφs

Ls

. (90)

Inserting (87) into (86), we have

Hn−m(krd) = SLs{exp[−i(n − m)φs] + exp[−i(n − m)(π − φs)]} (91a)

Hn−m(krd) = SpLs{exp[−i(n − m)φs] + exp[−i(n − m)(π − φs)]}
+SeLs{exp[−i(n − m)φs] + exp[−i(n − m)(π − φs)]}. (91b)

Defining

Jn−m(krd) = SpLs{exp[−i(n − m)φs] + exp[−i(n − m)(π − φs)]}

≡
∞∑
s=1

Jn−m(skrd)[exp(−iskrd sin ψi) + (−1)n−m exp(iskrd sin ψi)] (92a)

which corresponds to the Bessel series associated with the propagating range (| sin φs | < 1),
and

Nn−m(krd) = −iSeLs{exp[−i(n − m)φs] + exp[−i(n − m)(π − φs)]}

≡
∞∑
s=1

Nn−m(skrd)[exp(−iskrd sin ψi) + (−1)n−m exp(iskrd sin ψi)] (92b)

which corresponds to the Neumann series associated with the evanescent range (| sin φs | > 1),
we can then express the Schlömilch series in terms of (92a) and (92b) as

Hn−m = Jn−m + iNn−m (93)

representing the overall range of all modes.

4.4. Bessel series

Substituting (90) into (92a), we have obtained the Bessel series associated with the propagating
range (| sin φs | < 1) as

Jn =
[ s+∑

s=−s−

Ls{exp[−inφs] + exp[−in(π − φs)]}
]

− [1 + (−1)n]

[
sin (nπ/2)

nπ

]
. (94)

The evaluation of n = 0 requires special attention, and can be obtained from above as

J0 =
[

2
s+∑

s=−s−

Ls − 1

]
. (95a)

For even n, from (94), we have

J2n =
[

2
s+∑

s=−s−

Ls cos 2nφs

]
∀n � n ∈ N. (95b)
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Combining these two previous expressions in (95a) and (95b), we have obtained

J2n =
[

2
s+∑

s=−s−

Ls cos 2nφs − δn0

]
∀n � n ∈ Z+. (96)

For odd n, from (94), we have obtained

J2n+1 =
[

− 2i
s+∑

s=−s−

Ls sin (2n + 1)φs

]
∀n � n ∈ Z+ (97)

where Z+ = {0, 1, 2, 3, . . .}.

4.5. Evanescent range

The evanescent mode operator Se can be obtained from (87) as

Se = S − Sp. (98)

In operating Se on σ(s), we first introduce the Euler–Maclaurin summation formula from
Hardy [14] as ( n∑

s=1

−
∫ n

1
ds

)
σ(s) ≈ 7 +

1

2
σ(n) +

∞∑
ξ=1

(−1)ξ−1Bξ

(2ξ)!

∂2ξ−1σ(s)

∂s2ξ−1

∣∣∣∣
s=n

(99a)

where 7 is given as

7 =
(

1

2
−

∞∑
ξ=1

(−1)ξ−1Bξ

(2ξ)!

∂2ξ−1

∂s2ξ−1

)
σ(s)|s=1 (99b)

and Bξ represents a Bernoulli number. Employing the Euler–Maclaurin summation formula
of (99) in (98) effectively, we have finally obtained

Seσ (s) = −
( ∫ +s++1

σ+

+
∫ −σ−

−s−−1

)
σ(s) ds +

(
1

2
−

n−1∑
ξ=1

(−1)ξ−1Bξ

(2ξ)!

∂2ξ−1

∂s2ξ−1

)
σ(s)|s=±s±±1 + Rn

(100a)

where Rn corresponds to the remainder term and is given as

Rn =
∞∑
ξ=n

(−1)ξBξ

(2ξ)!

∂2ξ−1σ(s)

∂s2ξ−1

∣∣∣∣
s=s++1

s=s−+1

(100b)

s = ±s±±1 are the first non-propagating modes and ±π
2 ∓iη±

s are the corresponding values of
φ; the Bξ are Bernoulli numbers; s = ±s± are the grazing modes or Rayleigh values, and ±π

2
are the corresponding values of φ. By direct application of the chain rule of differentiation,
we can write

∂2ξ−1σ(s)

∂s2ξ−1
= 1

:2ξ−1

∂2ξ−1σ(sin φs)

∂(sin φs)2ξ−1
(101)

where : ≡ krd/2π , and introducing the relationship between Bernoulli polynomial and
Bernoulli numbers as

B2ξ (0) ≡ (−1)ξ−1Bξ (102)

we can express the evanescent mode operator Se in its most desired form as

Seσ (sin φs) = −
( ∫ π

2 −iη+
s

π
2

+
∫ − π

2

− π
2 +iη−

s

)
σ(sin φs) dφs

2πLs

+

[
1

2
−

n−1∑
ξ=1

B2ξ (0)

(2ξ)!:2ξ−1

∂2ξ−1σ(sin φs)

∂(sin φs)2ξ−1

]∣∣∣∣
s=±s±±1

+ Rn (103a)
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where Rn represents the remainder and is given as

Rn =
∞∑
ξ=n

(−1)ξBξ

(2ξ)!:2ξ−1

∂2ξ−1σ(sin φs)

∂(sin φs)2ξ−1

∣∣∣∣
s=s++1

s=s−+1

. (103b)

4.6. Neumann series

Substituting (103a) into (92b), we have obtained the Neumann series associated with the
evanescent range (| sin φs | > 1) as

N2n = 1

nπ
+

1

π

{ n∑
m=1

[
(−1)m22m(n + m − 1)!

(2m)!(n − m)!

]
B2m(: sin ψi)

:2m

−
( −1∑

s=−s−

−
s+∑
s=0

) n∑
m=1

[
(−1)m22m−1(n + m − 1)!

(2m − 1)!(n − m)!

]
(s + : sin ψi)

2m−1

:2m

}

+
(−1)n+1

π:




∞∑
s=s++1

[(
S
:

+ sin ψi

) −
√(

S
:

+ sin ψi

)2 − 1
]2n

√(
S
:

+ sin ψi

)2 − 1

+
∞∑

s=s−+1

[(
S
:

− sin ψi

) −
√(

S
:

− sin ψi

)2 − 1
]2n

√(
S
:

− sin ψi

)2 − 1
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∀n � n ∈ N , and

N2n+1 = 1

iπ

{
2

n∑
m=0

[
(−1)m22m(n + m)!

(2m + 1)!(n − m)!

]
B2m+1(: sin ψi)

:2m+1

−
( −1∑

s=−s−

−
s+∑
s=0

) n∑
m=0

[
(−1)m22m(n + m)!

(2m)!(n − m)!

]
(s + : sin ψi)

2m

:2m+1

}

+
(−1)n+1

iπ:




∞∑
s=s++1

[(
S
:

+ sin ψi

) −
√(

S
:

+ sin ψi

)2 − 1
]2n+1

√(
S
:

+ sin ψi

)2 − 1

−
∞∑

s=s−+1

[(
S
:

− sin ψi

) −
√(

S
:

− sin ψi

)2 − 1
]2n+1

√(
S
:

− sin ψi

)2 − 1
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∀n � n ∈ Z+, where Z+ = {0, 1, 2, 3, . . .}.
For the evaluation of the special case with n = 0, we have

N0 = −i

[
2

( ∞∑
s=−∞

−
∫ ∞

−∞
ds

)
Ls + 1 −

s+∑
s=−s−

Ls

]
(105a)

N0 =
[

− i

(
1 − 2

∫ ∞

−∞
ds Ls

)
− 2

π

∞∑
s=1

(
1

s

)]
+

[
1

π

( s+∑
s=1

+
s−∑
s=1

)
1

s

]

− 1

π

{ ∞∑
s=s++1

[
1√

(s + : sin ψi)2 − :2
− 1

s

]

+
∞∑

s=s−+1

[
1√

(s − : sin ψi)2 − :2
− 1

s

]}
. (105b)
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The evaluation of the first term in (105b), namely
[

− i

(
1 − 2

∫ ∞

−∞
ds Ls

)
− 2

π

∞∑
s=1

(
1

s

)]
(106)

requires special attention, and should be dealt with separately. Introducing a change of variables
as ω = : sin ω̄, we establish that

2
∫ ∞

−∞
ds Ls = 1

π
+

2

iπ

∫ ∞

:

dω̄√
ω̄2 − :2

(107a)

2
∫ ∞

−∞
ds Ls = 1 +

2

iπ
lim
ζ→∞

[
ln

(
2ζ

:

)]
. (107b)

In an attempt to evaluate the limit above, we introduced Euler’s constant as γ = 1.781 . . .

into (107b) and obtained

2
∫ ∞

−∞
ds Ls = 1 +

2

iπ

[ ∞∑
s=1

(
1

s

)
− ln

(
γ
krd

4π

)]
. (108)

Inserting the result of (108) into (106), we have obtained
[

− i

(
1 − 2

∫ ∞

−∞
ds Ls

)
− 2

π

∞∑
s=1

(
1

s

)]
= −

(
2

π

)
ln

(
:γ

2

)
. (109)

Upon inserting this result of (109) into (105b) we finally obtained the generalized N0 for the
oblique incidence case as

N0 = −
(

2

π

)
ln

(
:γ

2

)
+

[
1

π

( s+∑
s=1

+
s−∑
s=1

)
1

s

]
− 1

π

{ ∞∑
s=s++1

[
1√

(s + : sin ψi)2 − :2
− 1

s

]

+
∞∑

s=s−+1

[
1√

(s − : sin ψi)2 − :2
− 1

s

]}
. (110)

One should read the (−) sign in the second term of Twersky’s expression for the non-oblique
incidence as (+).

5. Conclusion

In this paper, the exact analytical expressions for the electric and magnetic field intensities
associated with the classical electromagnetic scattering problem of transverse electric multiple
scattering by an infinite grating of infinitely long circular dielectric cylinders to obliquely
incident plane electromagnetic waves has been derived in terms of the elementary function
representations of Schlömilch series introduced by Twersky [1]. It has been demonstrated that
the elementary function representations of Schlömilch series can effectively be employed to
determine the exact analytical solution of the classical electromagnetic scattering problem by
an infinite array of insulating circular dielectric cylinders for the obliquely incident transverse
electric fields. Our expressions for the elementary function representations of Schlömilch
series associated with obliquely incident plane electromagnetic waves are generalizations of
those presented by Twersky [1], and our solution reduces to his for the non-oblique incident
case.
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[12] Kavaklıoǧlu Ö 2001 On diffraction of waves by the infinite grating of circular dielectric cylinders at oblique
incidence: Floquet representation J. Mod. Opt. 48 125–42

[13] Watson G N 1948 Bessel Functions (Cambridge: Cambridge University Press) pp 354–61
[14] Hardy G H 1949 Divergent Series (Oxford: Oxford University Press)


